Lake level trends in central Alberta

Cristina Buendia, PhD
North Saskatchewan Watershed Alliance
Flowing Waters, October 2017
Beaverhill lake....
Lac Ste Anne...
Lakes are important sources of water, but....

Socio-economic uses:
- Municipal water supply
- Irrigation/Industrial processes
- Recreation
- Strong spiritual and cultural value

Ecological functions

As the population grows, demand for freshwater will increase
Lakes are important sources of water, but....

Socio-economic uses:
- Municipal water supply
- Irrigation/Industrial processes
- Recreation
- Strong spiritual and cultural value

Ecological functions

As the population grows, demand for freshwater will increase

Critical in the semi-arid climate of the prairie region of Canada

- Undergoes significant variation in wet and dry conditions (i.e. PDO, ENSO)
- Future scenarios -> intensification and persistence of drought

Lakes are becoming more vulnerable to human and natural stressors
Fluctuations in Prairie lakes

Prairie lakes have varied markedly over decades:

- Following **climate variability**:
 - Changes in precipitation and evaporation
- Influenced by changes in **land use** and water management

STUDIES EVALUATING LAKE LEVEL DECLINES

Van der Kaamp et al. (2008)

Changes in closed-basin lakes of the Prairies

- **16 closed-basin lakes in the Prairies**
 - Most of the lakes show a long-term water level decline from ~ 1920 to the present.
 - Patterns hold from SC-EC Alberta to through C and SE Saskatchewan
Fluctuations in Prairie lakes

Prairie lakes have varied markedly over decades:

- Following climate variability:
 - Changes in precipitation and evaporation
- Influenced by changes in land use and water management

STUDIES EVALUATING LAKE LEVEL DECLINES

Van der Kaamp et al. (2008)
Changes in closed-basin lakes of the Prairies

16 closed-basin lakes in the Prairies

- Most of the lakes show a long-term water level decline from ~1920 to the present.
- Patterns hold from SC-EC Alberta to through C and SE Saskatchewan

Casey (2011)
Trends in Alberta lake levels

- 37 lakes in AB
- 51% No trend
- 35% Declining
- 14% Increasing

- 37% No trend
- 2% Declining
- 0% Increasing
Main objectives

• Compile and summarize available and updated lake level data
Main objectives

- Compile and summarize available and updated lake level data

Challenge:

- Few lakes have sufficient long term and consistent data
- Many gaps, data is not consistent throughout the year
- Trend detection is largely influenced by the record length as well as the start and end points
Main objectives

• Compile and summarize available and updated lake level data

• Challenge:
 • Few lakes have sufficient long term and consistent data
 • Many gaps, data is not consistent throughout the year
 • Trend detection is largely influenced by the record length as well as the start and end points
Main objectives

• Compile and summarize available and updated lake level data

• Challenge:
 • Few lakes have sufficient long term and consistent data
 • Many gaps, data is not consistent throughout the year
 • Trend detection is largely influenced by the record length as well as the start and end points
Main objectives

Trends between 1985 - 2016 (~ 30 y of lake level data)

- Maximize the number of studied lakes
- Avoid potential effects introduced by the wet 1970s
- Keep the period consistend amongst lake records

Provide a regional overview of lake level trends, subject to the same climatic conditions, during the time when much of the development occurred

Focus on the broad spatial scale, not on individual lake balances!
Main objectives

Trends between 1985 - 2016 (~ 30 y of lake level data)

- Maximize the number of studied lakes
- Avoid potential effects introduced by the wet 1970s
- Keep the period consistent amongst lake records

Provide a regional overview of lake level trends, subject to the same climatic conditions, during the time when much of the development occurred

Focus on the broad spatial scale, not on individual lake balances!

Methods

1. Loss of lake surface area in the NSRB using satellite images
2. Statistical trend analyses on median annual lake levels
3. Annual Lake Level Index (ALI; Islam and Seneka, 2015)
Study of Global Surface Water and its long-term changes
by The European Commission’s Joint Research Center (JRC)

• Global data sets documenting changes in water surface between 1984 and 2015
• Produced from inventories, national descriptions, statistical extrapolation of regional data and satellite imagery.
• High resolution: 30x30m

Maps document different facets of water surface dynamics:

- **Surface Water Occurrence**
 - Frequency with which water was present on the surface from 1984 to 2015

- **Occurrence Change Intensity**
 - Information on where surface water occurrence increased, decreased or remained the same between two epochs: 1984-1999 and 2000-2015.
 - Direction and intensity of change are documented

- **Seasonality**
 - Information concerning the *intra-annual behaviour* of water surfaces.

- **Recurrence**
 - Information on the *inter-annual behaviour* of water surfaces (variability in the presence of water)

- **Transitions**
 - Information on the *change in seasonality* between the first and last year
 - Unchanging permanent water surfaces
 - New seasonal water surfaces
 - New water permanent surfaces
 - Lost seasonal water surfaces
 - Lost permanent water surfaces
 - Conversion of permanent into seasonal
 - Unchanging seasonal water surfaces
 - Conversion of seasonal into permanent
Maps document different facets of water surface dynamics:

- **Surface Water Occurrence**
 - Frequency with which water was present on the surface from 1984 to 2015

- **Occurrence Change Intensity**
 - Information on where surface water occurrence increased, decreased or remained the same between two epochs: 1984-1999 and 2000-2015.
 - Direction and intensity of change are documented

- **Seasonality**
 - Information concerning the intra-annual behaviour of water surfaces.

- **Recurrence**
 - Information on the inter-annual behaviour of water surfaces (variability in the presence of water)

- **Transitions**
 - Information on the *change in seasonality* between the first and last year
 - Unchanging permanent water surfaces - New seasonal water surfaces
 - New water permanent surfaces - Lost seasonal water surfaces
 - Lost permanent water surfaces - Conversion of permanent into seasonal
 - Unchanging seasonal water surfaces - Conversion of seasonal into permanent
Maps document different facets of water surface dynamics:

- **Surface Water Occurrence**
 - *Frequency*: with which water was present on the surface from 1984 to 2015

- **Occurrence Change Intensity**
 - Information on where surface water occurrence increased, decreased or remained the same between 1984-1999 and 2000-2015.
 - *Direction and Intensity*: documented

- **Seasonality**
 - Information concerning the *intra-annual* behaviour of water surfaces.

- **Recurrence**
 - Information on the *inter-annual* behaviour of water surfaces (variability in the presence of water)

- **Transitions**
 - Information on the *change in seasonality* between the first and last year
 - Unchanging permanent water surfaces
 - New water permanent surfaces
 - Lost permanent water surfaces
 - Unchanging seasonal water surfaces
 - New seasonal water surfaces
 - Lost seasonal water surfaces
 - Conversion of permanent into seasonal
 - Conversion of seasonal into permanent
Change in seasonality

Transitions...

Total lake Area = 2,278 km² (~ 2% of the NSRB)
Water transitions map - Lakes
(Beaverhill)
Water transitions map - Lakes
(Isle lake and lac Ste. Anne)
Transitions

Change in seasonality

- Change: 39% (889 Km²)
- No Change: 61% (1,390 Km²)
Change in seasonality

- Change towards the loss of lake area (both permanent and seasonal surface waters)

- Change
- No Change

- Lost permanent or seasonal: 8% of 1,390 km² = 111.2 km²
- New permanent or seasonal: 8% of 889 km² = 71.12 km²
- No change: 92% of 1,390 km² = 1,288.8 km²

- 61% of 1,390 km² = 839.9 km²
- 39% of 889 km² = 347.91 km²
94 lakes selected to evaluate temporal trends
• Records extent from at least from 1985 until the present
• Levels respond to natural fluctuations
• Not used as reservoirs or subject to major diversions
Temporal trends

THE DATABASE

94 lakes selected to evaluate temporal trends

- Records extent from at least 1985 until the present
- Levels respond to natural fluctuations
- Not used as reservoirs or subject to major diversions

Lakes from the South Saskatchewan are highly regulated
Temporal trends

Mann Kendall trend test applied to median annual lake levels
Non-parametric test to detect monotonic trends in environmental data

Trends classified in 5 categories:

- Decreasing: Negative trend at the 95% CL
- Increasing: Positive trend at the 95% CL
- Likely decreasing: Negative trend at the 90% CL
- Likely increasing: Positive trend at the 90% CL
- No trend: No statistical trend
(2) Temporal trends

RESULTS

Overall decrease in lake levels across the province:

- **Decreasing**: 50%
- **No trend**: 32%
- **Likely Increasing**: 12%
- **Increasing**: 4%
- **Likely decreasing**: 2%
Some Examples...
Some Examples...

Antler Lake

738.476 → ~ 0.6m → 737.898
SOME EXAMPLES...

Lac Sante

Level (m GSC)

607.126

~ 4m

603.147

SOME EXAMPLES...

Lac Ste Anne

- Increasing
- Likely Increasing
- No trend
- Likely Decreasing
- Decreasing

Some examples...

722.888

Level (m GSC)

722.4 722.6 722.8 723.0 723.2

722.767
ALI — Alberta Lake Level Index

- Index developed by Islam and Seneka (2015)* - AEP –
- Compares water levels recorded throughout the year to historical patterns
- Resulting index for each year is ranked according to 5 categories:

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Lake Level Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAN-</td>
<td>Much Above Normal</td>
<td>Lake Level > 90<sup>th</sup> perc.</td>
</tr>
<tr>
<td>AN-</td>
<td>Above Normal</td>
<td>70<sup>th</sup> perc. < Lake level < 90<sup>th</sup> perc.</td>
</tr>
<tr>
<td>N-</td>
<td>Normal</td>
<td>75<sup>th</sup> perc. < Lake Level < 25<sup>th</sup> perc.</td>
</tr>
<tr>
<td>BN-</td>
<td>Below Normal</td>
<td>25<sup>th</sup> perc. < Lake Level < 10<sup>th</sup> perc.</td>
</tr>
<tr>
<td>MBN-</td>
<td>Much Below Normal</td>
<td>Lake Level < 10<sup>th</sup> perc</td>
</tr>
</tbody>
</table>

Percentage of lakes for each category (1985-2016)

- Not all lakes are included in every year (data constraints)
- 86 lakes/year on average
- Min: 48 lakes in 2010
PERCENTAGE OF LAKES FOR EACH CATEGORY (1985-2016)

1985
88% -> N - AB - MAN
12% -> BN - MBN

2016
45% -> N - AB - MAN
55% -> BN - MBN
PERCENTAGE OF LAKES FOR EACH CATEGORY (1985-2016)

1985
88% -> N - AB - MAN
12% -> BN - MBN

2016
45% -> N - AB - MAN
55% -> BN - MBN
More questions…

- What are the main drivers of the decline?
- Is there any characteristic that makes a lake more vulnerable to climate/human effects?
More data...

- **Average annual change rate in lake level**
- **SLOPE OF DECLINE**

Variations in Lake Level Decline

- **Watershed**
 - Geology
 - Land Cover
 - Linear Developments

- **Hydrology**
 - Water Yields
 - Connectivity to stream network

- **Climate**
 - Precipitation
 - Temperature
 - Evapotranspiration

- **Lake Properties**
 - Lake morphology

Graph

Level (m GSC) vs. Time (1985-2000)
On going work... Some preliminary results.

PRINCIPAL COMPONENTS ANALYSIS (PCA)

- Emphasizes variation and brings out strong patterns in the dataset
- Finds correlations between the data and plots it in a 2D space
On going work... Some preliminary results..

PRINCIPAL COMPONENTS ANALYSIS (PCA)
On going work... Some preliminary results..

PRINCIPAL COMPONENTS ANALYSIS

![Diagram showing principal components analysis with categories SLOPES <0 and SLOPES >~0. The diagram includes points labeled with categories such as Prec, LL, PA, Ur, etc., and a box highlighting the Lisen category.](image-url)
On going work... Some preliminary results..

PRINCIPAL COMPONENTS ANALYSIS (PCA)

- Water Yield
- Precipitation
- Elevation
- % Forest

Coarser geology:
- Colluvial deposits
- Eolian deposits
- Fluvial deposits

Finer geology:
- Lacustrine deposits
- Glaciolacustrine deposits
- Stagnant ice moraine

Lisens
On going work... Some preliminary results..

PRINCIPAL COMPONENTS ANALYSIS (PCA)

Emphasize variation and bring out strong patterns in the dataset

Natural Regions
On going work... Some preliminary results...

Lake Order *(Riera et al., 2000)*

Type and strength of the connections between a lake and the surface drainage network

Numbering System:

<table>
<thead>
<tr>
<th>Lakes without permanent inlets/outlets</th>
<th>Lakes with inlets/outlets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seepage lakes</td>
<td>Drainage lakes</td>
</tr>
<tr>
<td>Negative lake order</td>
<td>Positive lake order</td>
</tr>
<tr>
<td>Closed lakes -> more negative values</td>
<td>Order of the stream that drains the lake</td>
</tr>
</tbody>
</table>

Riera et al., 2002. A geomorphic template for the analysis of lake districts applied to the Northern Highland Lake District. Freshwater Biology, 43.
Lake level decline (slope)

Lake Order (Riera et al., 2000)*

 Larger lake orders show no/lower lake level declines (less negative/positive slopes)

On going work... Some preliminary results.
On going work... Some preliminary results..

Lake Order (Riera et al., 2000)*

Larger lake orders show lower declines (less negative/positive slopes)

Large order lakes
- Tend to be in closer contact with aquifers (Cheng and Anderson, 1994)
- Will have (in general) larger watershed-to-lake area ratios

Low order lakes
- Usually seepage lakes that receive most of the water from precipitation/surface runoff
- Hydrologic balance might be more dynamic across years -> Influenced by climate

On going work… Some preliminary results..

SHAPE OF ALBERTA LAKES (Islam and Seneka, 2016)

Evaluated volume to depth relationships of Alberta lakes and assigned an “idealized shape”

Relationship between Lake Volume/Surface Area and Depth

Lake morphometry influence lake functioning and processes such as mixing and evaporation

Islam and Seneka, 2016 (AEP)- *Development of generic shapes of Alberta lakes to support water policy development
Some observations…

Spatial scale

Watershed scale

Connectivity to stream network

Morphometry
Take home message...

- Different methods yield similar results
 - Regional lake level decline across the province

- Lake levels are naturally dynamic
 - Climate is an important signal in lake fluctuations
 - Others drivers that influence in lake dynamics

Understanding the dynamics of the lakes in the landscape is essential for developing an adaptive approach in lake management.
THANKS!

Comments
Questions
Ideas